Papers

Papers

Click “[PDF]” to download each paper.

2024

Johnson, L. K., Mahoney, M. J., Domke, G. M., and Beier, C. M. In Review. New allometric models for the USA create a step-change in forest carbon estimation, modeling, and mapping. In review at Remote Sensing of Environment. https://arxiv.org/abs/2405.04507 [PDF]

2023

Mahoney, M. J. Preprint. waywiser: Ergonomic methods for assessing spatial models. https://arxiv.org/abs/2303.11312 [PDF]

Mahoney, M. J., Johnson, L. K., Silge, J., Frick, H., Kuhn, M., and Beier, C. M. Preprint. Assessing the performance of spatial cross-validation approaches for models of spatially structured data. https://arxiv.org/abs/2303.07334 [PDF]

Johnson, L. K., Mahoney, M. J., Desrochers, M. L., and Beier, C. M. 2023. Mapping historical forest biomass for stock-change assessments at parcel to landscape scales. Forest Ecology and Management, 546, 121348. https://doi.org/10.1016/j.foreco.2023.121348 [PDF]

Mahoney, M. J., Johnson, L. K., and Beier, C. M. 2023. AI for shrubland identification and mapping. In Sun Z, Cristea N, Rivas P (eds.), Artificial Intelligence in Earth Science, 295-316. Elsevier. ISBN 978-0-323-91737-7. https://doi.org/10.1016/B978-0-323-91737-7.00010-4 [PDF]

2022

Mahoney, M. J., Johnson, L. K., Guinan, A. Z., and Beier, C. M. 2022. Classification and mapping of low‑statured ’shrubland’ cover types in post‑agricultural landscapes of the US Northeast. The International Journal of Remote Sensing, 43(19‑24), 7117‑7138. https://doi.org/10.1080/01431161.2022.2155086 [PDF]

Johnson, L. K., Mahoney, M. J., Bevilacqua, E., Stehman, S. V., Domke, G. M., and Beier, C. M. 2022. Fine-resolution landscape-scale biomass mapping using a spatiotemporal patchwork of LiDAR coverages. International Journal of Applied Earth Observation and Geoinformation 114: 103059. https://doi.org/10.1016/j.jag.2022.103059 [PDF]

Mahoney, M. J., Johnson, L. K., Bevilacqua, E., and Beier, C. M. 2022. Ground noise filtering produces inferior models of forest aboveground biomass. GIScience and Remote Sensing 59(1): 1266-1280. https://doi.org/10.1080/15481603.2022.2103069 [PDF]

Mahoney, M. J., Beier, CM, and Ackerman, AC. 2022. unifir: A Unifying API for Interacting with Unity from R. Journal of Open Source Software 7(73): 4388. https://doi.org/10.21105/joss.04388 [PDF]

Tamiminia, H., Salehi, B., Mahdianpari, M., Beier, C. M., Johnson, L. K., Phoenix, D. B., and, Mahoney, M. J. 2022. Decision tree-based machine learning models for above-ground biomass estimation using multi-source remote sensing data and object-based image analysis. Geocarto International. https://doi.org/10.1080/10106049.2022.2071475

Mahoney, M. J., Beier, CM, and Ackerman, AC. 2022. terrainr: An R package for creating immersive virtual environments. Journal of Open Source Software 7(69): 4060. https://doi.org/10.21105/joss.04060 [PDF]

2021

Mahoney, M. J., Beier, CM, and Ackerman, AC. 2021. Interactive landscape simulations for visual resource assessment. VRSC 2021 Conference Proceedings. [PDF]

2020

Mahoney, M. J., and Stella, JC. 2020. Stem size selectivity is stronger than species preferences for beaver, a central place forager. Forest Ecology and Management 475: 118331. https://doi.org/10.1016/j.foreco.2020.118331 [PDF]